an Institutional Approach to **Enabling Smaller Spacecraft** The X2000 Program -

Les Deutsch, Chris Salvo
Deep Space Systems Technology (DSST) Program
Dave Woerner

X2000 First Delivery Project

Visit the DSST web site at http://www.dsst.jpl.nasa.gov

April 14, 1999

The X2000 Program ntroduction to X2000 The Old Days

- Missions were large and expensive
- A new deep space mission "start" occurred only every few years
- Mission budgets were large enough to do substantial technology development
- Technology used on one mission would be obsolete by the next mission

ntroduction to X2000 The Future

- embark on a new era of exploration The number of deep space missions is increasing as we
- afford large individual investments in technology New missions are "faster-better-cheaper" and cannot
- advantage of the technological breakthroughs that are science critical to getting the cost down while increasing the A new process is needed to allow these missions to take

70

80

90

100

- The key is multimission technology development
- NASA will make institutional investments in technology to benefit sets of missions

Continuous investment will

provide a series of revolutions

execution mission design and common challenges in in technology to address

1970

ntroduction to X2000 X2000 Concept

DSST X2000

The Trend Toward Smaller Spacecraft The X2000 Program Introduction to X2000

Cassini

Pathfinder

Mars

Lewis

Solar Probe

NEAR

Stardust

"Microspacecraft"

The X2000 Program Introduction to X2000 Avionics Miniaturization

Introduction to X2000 Program Program Top-Level Organization

- Deep Space Systems Program
- X2000 First Delivery
- X2000 Future Deliveries
- Mission Data System
- Advanced Radioisotope Power Source (ARPS)
- Center for Integrated Space Microsystems (CISM)

ntroduction to X2000 X2000 First Delivery

General

- Scalable, modular, long life
- Radiation hardened designs, parts, & materials
- Sensor/Instrument input and output
- Avionics
- Computer, local memory, mass memory
- Power & pyro switching
- Power system control
- Communications
- Spacecraft transponding modem (STM) with X and Ka-band

capabilities

- Flight and Ground software (MDS)
- Operating systems
- Generic auto-nav, 3-axis attitude control
- Generic flight/ground autonomy Generic flight/ground science data
- Generic ground processing command/telemetry processing &
- **Advanced Radioisotope Power** System (ARPS) display
- High efficiency 0.9N thruster

ne X2000 Program

Radiation-hard Delivery Introduction to X2000

では、100mmので

- X2000 First Delivery will deliver radiation-hard capabilities
- Designs and components will also be useful for commercial endeavors
- Design will survive in LEO, GEO, and deep space, and enables MEO missions
- Design will also handle SEUs and will be immune to particle-induced latch-up

NASA

Introduction to X2000

Avionics Building Blocks - 9 Slices to Mix and Match

SFC - System Flight Computer

- X2000 avionics is being built in slices based on CPCI
- The whole system is plugand-play
- PCI and IEEE 1394 buses are supported

MCS - Microcontroller Slice

1 Gbit/slice Flash Memory

 General purpose controller for spacecraft peripherals

SIF - Transponder Interface

 Cross straps to two transponders

The X2000 Program Introduction to X2000

X2000 System Construction

X2000

- The 9 slices are inserted into customized CPCI card cages
- Additional cards can be added by individual spacecraft to add functionality beyond the X2000 core

The X2000 Program

Introduction to X2000

Advanced Radioisotope Power System (ARPS)

radioisotope power system that dramatically reduces the use of radioactive X2000 is developing, in partnership with DoE, an advanced, highly efficient

LUD-13 04/14/98

Planets/Solar Probe missions

CHITAR BARRASON

One ARPS per Outer

Center for Integrated Space Microsystems (CISM) Introduction to X2000

1st Delivery Electronics

- Power electronics
- Telecom processing
- 3D multichip module standard
- Integrated architecture

Avionics System-on-a-Chip

- Begin design and fabrication of minimum avionics system-ona-chip.
- Telecom, power management, CPU, memory, and sensors.

- Reconfigurable computing
- Ultra-low-power electronics
- Quantum computing
- MEMS-Optics, etc.

CISM: Revolutionary Computing Technologies Introduction to X2000

Quantum Dots

Computing Quantum

Optical

STM Atomic Practical Vicrograph Layers devices

Macroscopic currents and radiation

Atomic scale physics

Computing

Systems on a chip

Biological Computing

Evolvable Hardware

Reconfigurable Computing

LJD-16 04/14/98

CISM: System on a Chip (SOAC) ntroduction to X2000 The X2000 Program

Micromachined front end for

miniaturized RF comm system 1K×1K APS

Thin film

comm. & advanced star

low-power optical

Multiple CPU/chip with DRAM SRAM, NVRAM, BIST, fault

Processor in memory:

Active Pixel Sensors for

passive components for microtransformers & miniaturized power management and distribution

> ~10,000cc, ~60 kg, ~150W X2000 First Delivery:

architecture & devices Ultra-low-power

Micromechanical inertial reference system for mini guidance & nav

Thermoelectric thin advanced therma film coolers for control

batteries for onchip power Thin film storage

switch for high speed power, optoelectronic High bandwidth, low

optical bus 04/14/98 LID-15

Introduction to X2000 Introduction to X2000 The Mission Data System (MDS)

- The MDS is the glue that holds X2000 together
- Includes all flight and ground software required to provide delivered functionality
- Embodies the end-to-end system architecture

Introduction to X2000 X2000 Future Deliveries Vision

- On 4-6 year centers, revolutionize the remote sensing, full spacecraft capability.
- In between these deliveries, enable new systems for new exploration approaches and provide a path for progress towards the next revolution.

sharpening capabilities (orbiters, flybys, probe carriers, landers, ...),

broadening the exploration toolset (penetrators, aerobots, subsurface systems, ...)

The X2000 Program

Introduction to X2000

Future Deliveries: Develop Technology for Strategic NASA Missions

Need advanced capabilities in many diverse systems:
Orbiters, landers, probes, rovers, penetrators, aerobots, aircraft, subsurface, submarine, ...?

Mars/Venus Aerobot

lo Volcanic Obse

Saturn Ring Observer

Small Body In-Situ

and Sample Return

Exploration

NO/TE
Neptune Orbiter/
riton Exploration

Outer Planet Deep Multi-Propes

Titan Organic Explore

Europa Lander

The X2000 Program Introduction to X2000

X2000 - Trend in Future Delivery Metrics

\$2000 DSST

NASA

Introduction to X2000 Engram Introduction to X2000 Some Possible Second Delivery Beneficiaries

Integrated Avionics

= Deep Space/Relay Communications

= Mini Propulsion

LJD-21 04/14/98

ntroduction to X2000 Conclusion

- NASA's X2000 Program is important for two reasons
- It develops the technology that will enable new types of deep space space exploration
- It is a new, faster and cheaper process for technology infusion into **NASA missions**
- future spacecraft It transfers these capabilities to US industry so they are available for
- Many of these new capabilities are relevant to Earth missions as well
- X2000 will work with the NASA Goddard Space Flight Center (and others) to help make these capabilities available to a larger community